HemaShock® for Saving Lives in Severe Shock

Oneg HaKarmel Ltd.

www.HemaShock.com

Contact: Noam Gavriely MD, DSc, <u>Noam@HemaShock.com</u> +972-544-661337

Characteristics of Mass Casualty Situation

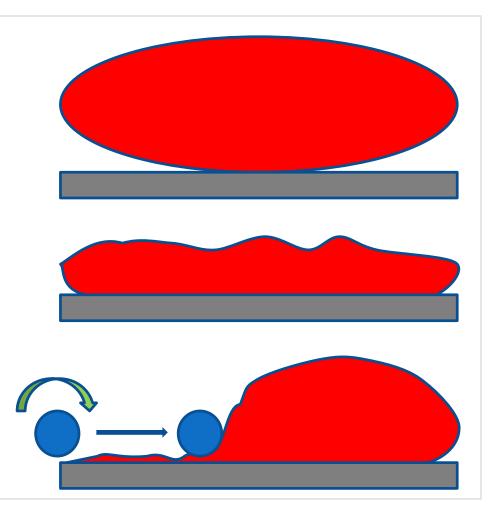
- Many injured
- Few skilled healthcare personnel
- Long(er) evacuation times
- No blood available for transfusion

Result:

(too) Many patients die from hemorrhagic shock

HemaShock[™] – Auto-Transfusion Tourniquet

Indicated for patients with **SEVERE HYPOTENSION**


 $(< 80_{mmHg})$ such as in Shock and Cardiac Arrest

Physiological Principles of Auto-transfusion

1. **Normal blood volume**, vascular volume and blood pressure

2. Reduced blood volume relative to vascular volume → reduced pressure; large "unstressed" volume

3. Applying **external force** on the non-essential part of the body **shifts blood to the central circulation**, restores blood flow and pressure to the essential organs

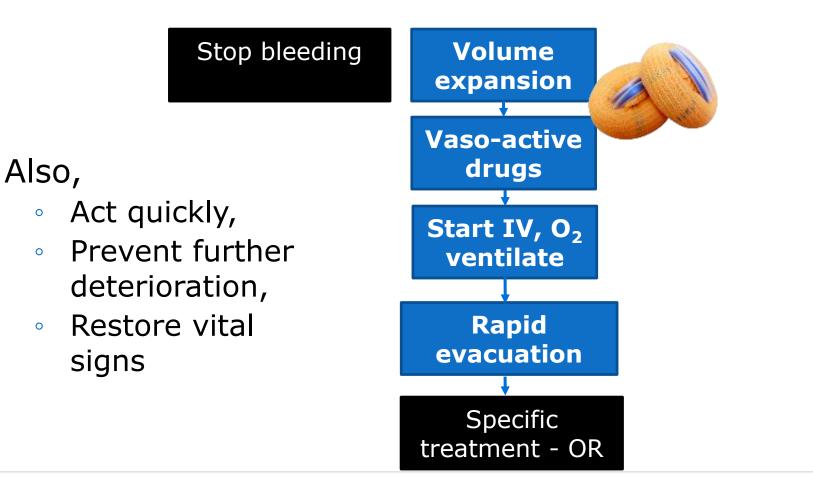
HemaShock[™] – Mechanism of Action

- Displacing blood from legs to core; >500 cc of blood from each leg
- Blocking flow of blood into the legs

As such, the HemaShock acts as a mechanical vasoconstrictor

The HemaShock in Use

CPR



Extensively Tested Technology

- The HemaShock[™] shares technology with HemaClear[®] facilitating BLOODLESS SURGERY in orthopedic surgery of the limbs
- HemaClear[®] is clinically practiced for over 10 years
 - Has been used in over 1.2 million operations in >40 countries
 - Holds an impeccable safety track record during OR use

Timing of HemaShock use in Severe Hemorrhagic Shock

0

Training

Teaching medics when and how to apply HemaShock should take 45-60 minutes. Removal is only done in hospital after patient's vital signs are stabilized

Thank you!

Pig Pox

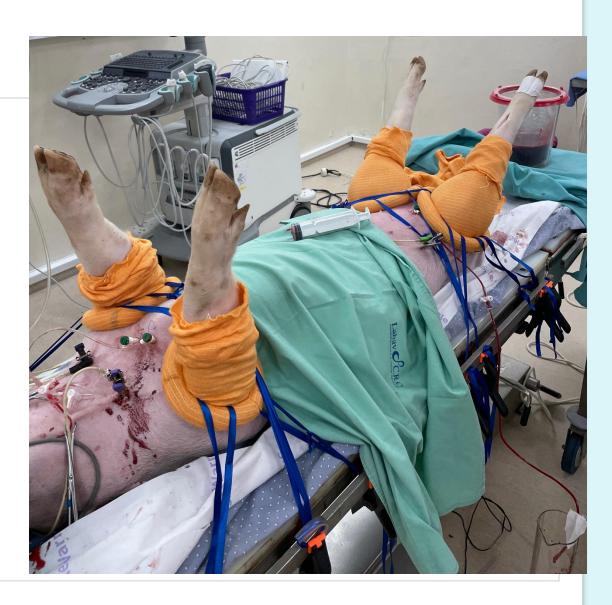
It works...

Study in hemorrhagic shock pig model

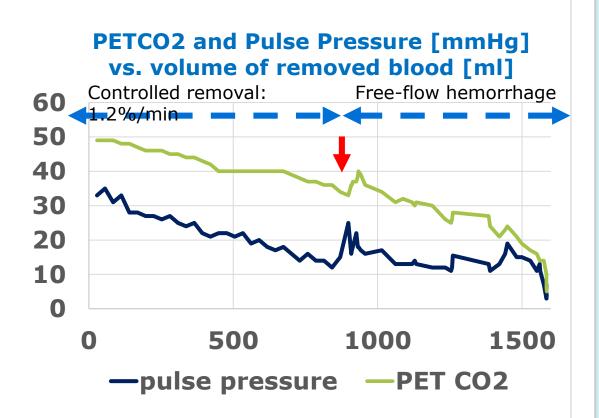
Protocol • 8 pigs 35-37 kg; 5 with HS; 3 without HS Initial bleeding – controlled at 1.2% /min Continued until mean Blood Pressure (BP) was 30 mm Hg At this point HemaShock was applied to 4 limbs of HS animals All pigs continued to bleed at free flow until no QRS complexes on EKG (cardiac arrest) We measured: volume of blood shed per minute, BP, PETCO2, HR, CVP,

HS on Hind legs

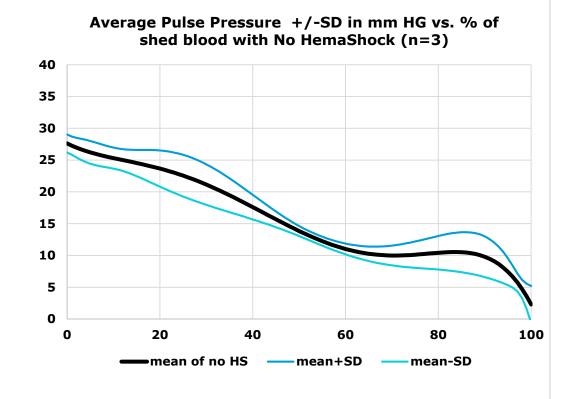
 Note the HS is brought up above the knee (arrows) and the 4 straps of each HS are tied in a rhomboid fashion to the surgical table.


No blood in limb with HemaShock

Blood withdrawal measured by weight and by volume

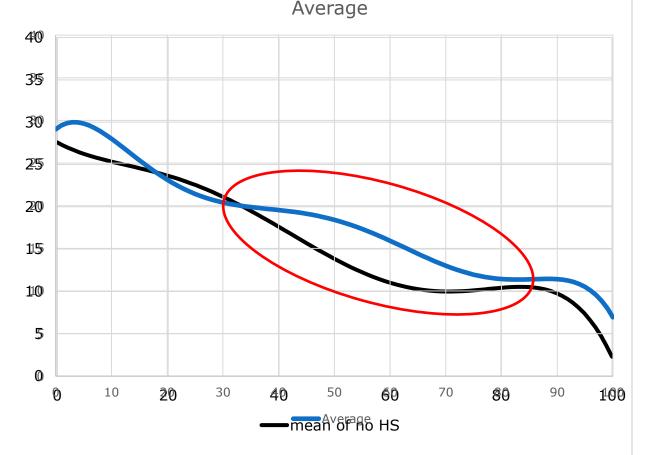


HS on 4 limbs

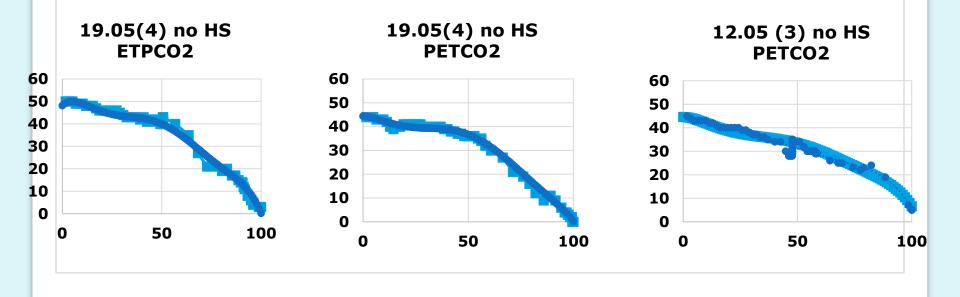


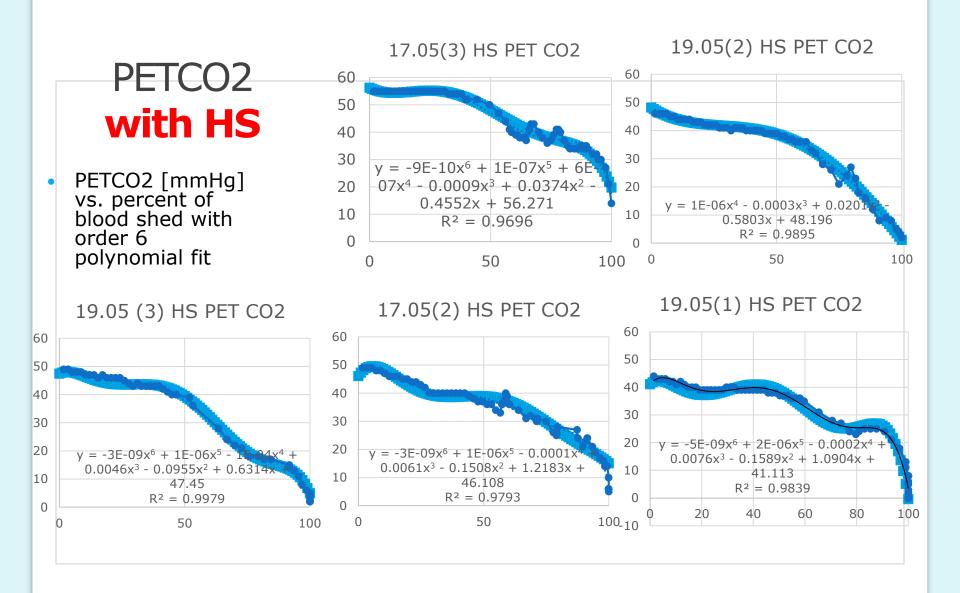
Protocol with HS

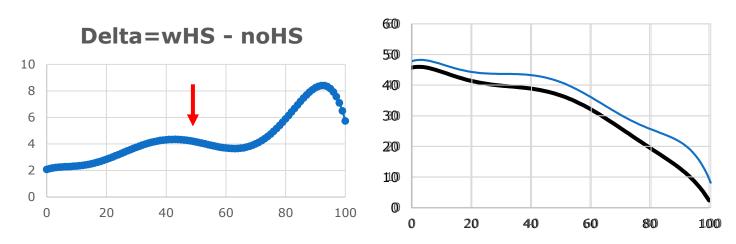
 End-Tidal CO2 and Pulse Pressure as function of bleeding volume.
Red Arrow: placement of HemaShock



Average Pulse Pressure no HS


Average Pulse Pressure in mm HG vs. % of shed blood with and without HemaShock


With HS (blue line); Without HS (Black line) Note the difference after HS was placed

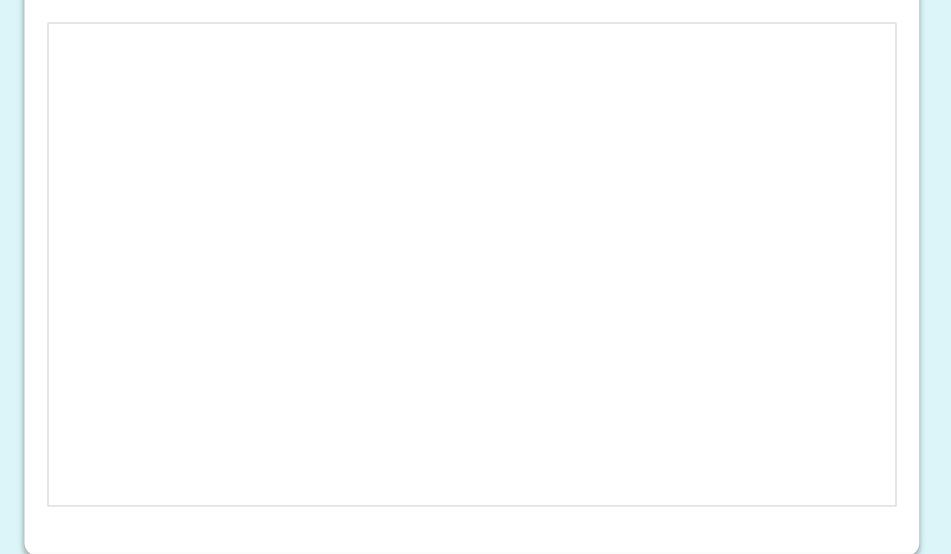

PETCO2 vs. blood loss as % of total bleeding Without HemaShock

Data from 3 hemorrhagic shock experiments with controlled blood withdrawal (1.2% of blood volume) until mean BP fell to 30 mmHg, followed by free-flow bleeding. Data plotted vs. bloodloss expressed as % of total bloodloss. 6th order polynomial regression curve fit is shown.

PETCO2 with (blue) and without (black) HS

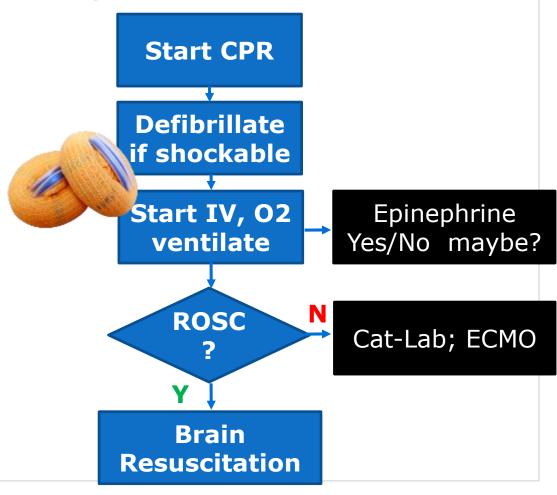
-Average

HS/NoHS percent


		Pulse Pressure [mm Hg]			PETCO2 [mm Hg]			
#		_		Minutes		-	Minutes	
HS/noHS%		151.7032	114.7735	128.3544	149.5489	115.2405	120	

- The averages of pulse pressure and PETCO2 are 15% greater with HS than with no HS.
- Survival after onset of free bleeding is 128% and 120% longer.
- Conclusion: we can extend pigs' lives...

Summary


- Use of HS on 4 limbs of pig (16% of body) is less than 2 legs (24% of body).
- Never the less:
- Applying HemaShock when shock was severe (mean blood pressure 30 mm Hg) increased:
 - Survival time 20-28%
 - Blood pressure
 - Pulse pressure 15%
 - End-tidal CO2 15%
 - Integrated Pulse Pressure-time and PETCO2time 150%

Thank you!

The recommended timing of HemaShock® in CPR

Abbreviated AHA protocol

Esmarch Exsanguination Tourniquets – Porcine Study Published in J. Resuscitation

 HemaShock equivalent increased Blood Pressure, Coronary Perfusion Pressure (CPP), Cerebral Blood Flow, and CO₂ Output (ETCO₂) during CPR

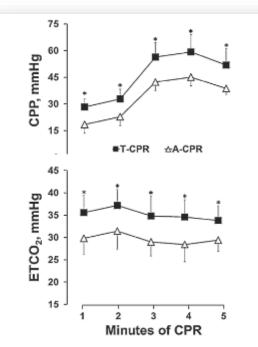
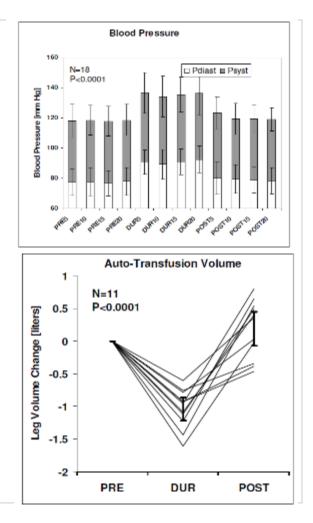
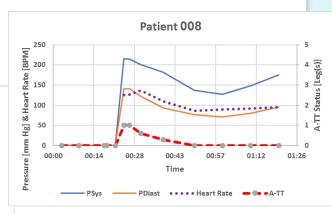
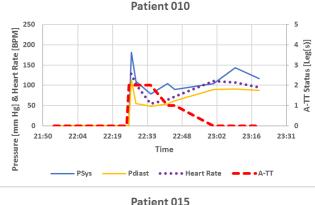
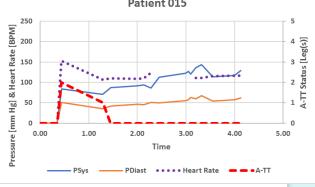



Fig. 3. The coronary perfusion pressure and the end-tidal carbon dioxide during cardiopulmonary resuscitation (CPR). CPP, coronary perfusion pressure; ETCO₂, endtidal carbon dioxide; T-CPR, tourniquet assisted CPR group; A-CPR, CPR alone group. *p<.05 vs. the A-CPR group.


Clinical Validation – Healthy Subjects


- HemaShock[™] was applied on both legs for 20 minutes
- Physiological, biochemical and respiratory parameters were measured
- Blood volume shifts were measured
- >1000 ml of blood shifted from legs to core circulation
- Systolic and Diastolic BP were increased
- No Biochemical adverse effects were seen
- No respiratory or cardiovascular adverse effects were observed

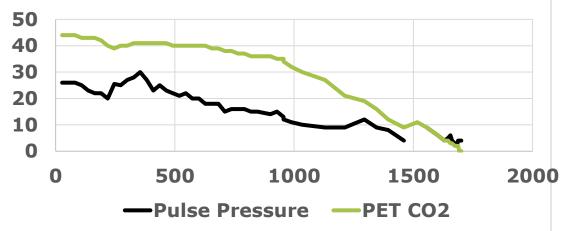


Patients who converted to ROSC once HemaShock was placed

 Witnessed cardiac arrest patients brought to ER during CPR in terminal condition (dilated pupils)
>30 min after collapse. Examples of HS-induced ROSC.

Patient 005 250 5 Pressure [mm Hg]; Heart Rate [BPM] 200 Δ **Δ-Π** Statu 150 3 100 2 50 1 20:24 21:36 22:48 0:00 Time A-TT status PSvs PDiast HR

About Us


Oneg HaKarmel Ltd. was founded by Prof. Noam Gavriely, a physiologist, emergency physician and entrepreneur. The Company first brought to market the HemaClear® (<u>www.HemaClear.com</u>) Which is becoming standard of care in orthopedic limb surgery. Gavriely also founded KarmelSonix Ltd. for acoustic asthma monitoring, now traded on the Australian Securities Exchange as Respiri (<u>https://respiri.co/</u>) and ETView for continuous intra-airway visualization now marketed by Ambu

(<u>https://www.ambu.com/products/airway-</u> <u>management/double-lumen-tube-with-integrated-camera</u>) Gavriely holds MD and PhD degrees from the Technion in Israel and did his post-doctoral training at the Harvard School of Public Health. He is the CEO and CMO of the Company

- Leonardo Schwartz is a seasoned operations expert with strong background in quality, manufacturing, and project management in the medical devices arena. Schwartz is in charge of the day-to-day operations of the Company as its COO. Contact: Leonardo@HemaClear.com
- Oneg HaKarmel Ltd. is located in Tirat Carmel, Israel.

No HS

PETCO2 and Pulse Pressure vs. volume of bleeding [ml]

No HemaShock. Sum is the integral from onset of free flow till the end.

		No HS						
			Pulse Pressure [mm Hg]			PETCO2 [mm Hg]		
#			Sum	Average	Minutes	Sum	Average	Minutes
3(1)		12/05/2022	372	12.8	29	745	26.6	28
	1	17/05/2022	256	9.5	27	605	22.4	27
	4	19/05/2022	147	6.4	23	246	10.25	24
		Average	258.3	9.6	26.3	532.0	19.8	26.3
		SD	112.5	3.2	3.1	257.4	8.5	2.1

With HS

		HS						
			Pulse Pressure [mm Hg]			PETCO2 [mm Hg]		
#			Sum	Average	Minutes	Sum	Average	Minutes
	2	17/05/2022	481	13.4	36	908	25.2	36
	3	17/05/2022	754	15.1	50	1854	36.9	50
	1	19/05/2022	290	8.8	33	442	17	26
	2	19/05/2022	201.5	9.6	21	407	19.4	21
	3	19/05/2022	233	8	29	367	15.3	25
		Average	391.9	10.98	33.8	795.6	22.76	31.6
		SD	229.6411	3.097095	10.66302	630.9884	8.746599	11.67476